
D1b

First integrated system

Date: 23 December 2008

Dissemination level: Public

SEMAINE D1b

ICT project contract no. 211486

Project title
SEMAINE
Sustained Emotionally coloured Machine-human Interaction
using Nonverbal Expression

Contractual date of
delivery

31 December 2008

Actual date of delivery 23 December 2008

Deliverable number D1b

Deliverable title First integrated system

Type Demonstrator

Number of pages 36

WP contributing to the
deliverable

WP 1

Responsible for task Marc Schröder (schroed@dfki.de)

Author(s)

Marc Schröder (DFKI)
Mark ter Maat (UT)
Catherine Pelachaud, Elisabetta Bevacqua, Etienne de Sevin
(Paris8)
Björn Schuller, Florian Eyben, Martin Wöllmer (TUM)

EC Project Officer Philippe Gelin

page 2 of 36 ICT FP7 Contract no. 211486

mailto:schroed@dfki.de
mailto:schroed@dfki.de
mailto:schroed@dfki.de

SEMAINE D1b

Table of Contents
1 Executive Summary..5
2 System architecture: Components and representation formats..6

2.1 Overview of the conceptual architecture..6
2.2 Representation formats...7

2.2.1 Features...7
2.2.2 User data: signals..8
2.2.3 User data: behaviours..8
2.2.4 User data: intentions..8
2.2.5 Dialog state...8
2.2.6 Agent intentions..9
2.2.7 Agent behaviours..9
2.2.8 Candidate action..9
2.2.9 Action..9
2.2.10 Behaviour plan..9
2.2.11 Behaviour data...9

3 The SEMAINE API..11
3.1 Message routing: Receiver, Sender and their subclasses..11
3.2 Component..13
3.3 ComponentRunner..15
3.4 Meta messages and the System Manager...16
3.5 Centralised logging...17
3.6 XML handling...17

4 The first integrated system demonstrator...19
4.1 Individual system components..19

4.1.1 Low-level audio features...19
4.1.2 Emotion detection...20
4.1.3 ASR...20
4.1.4 Interest detection...21
4.1.5 Turn taking..21
4.1.6 User utterance interpreter..21
4.1.7 Agent utterance proposer..21
4.1.8 Backchannel/Mimicry action proposer...22
4.1.9 Action selection...22
4.1.10 Speech preprocessing..23
4.1.11 FML2BML..23
4.1.12 Speech synthesis...23
4.1.13 BML realiser...23
4.1.14 Greta player...24

5 Availability...25
6 References..26
 Appendix I: SemaineML Markup...28

 I.1 Feature functionals and behaviour description...28
 I.2 ASR output...28
 I.3 Current best guess values for states: user, agent, dialogue...28

page 3 of 36 ICT FP7 Contract no. 211486

SEMAINE D1b

 I.3.1 User state..29
 I.3.2 Agent state..29
 I.3.3 Dialogue state...29

 Appendix II: FML Markup...30
 Appendix III: BML Markup...33
 Appendix IV: SMILE Low-Level Features..35
 Appendix V: SMILE Functionals...36

page 4 of 36 ICT FP7 Contract no. 211486

SEMAINE D1b

1 Executive Summary
The present report describes the first public system demonstrator released by the SEMAINE project
after the first year of work in the project. The aim of SEMAINE is to build a Sensitive Artificial
Listener (SAL) – a multimodal dialogue system with the social interaction skills needed for a sus-
tained conversation with a human user.

As a snapshot of “work in progress”, the demonstrator aims to illustrate the following:

● the SEMAINE project has proposed a system architecture for realising multimodal analysis
and generation in a user-and-ECA dialogue situation;

● a SEMAINE API has been created to allow processing components to communicate with
each others according to the architecture, using appropriate representation formats at inter-
faces between components;

● an initial set of components exist to partially realise the core functions of a SAL system.

The system is not yet intended to function as a fully operational, real-time SAL system; its main
aim is to give an “early view” to technologically interested experts, indicating the direction in which
the work is going. Individuals and research teams interested in cooperation around the SEMAINE
platform are explicitly invited to contact the project team.

Over the next year, the system will be developed into a fully operational SAL system, including the
following elements:

● the user analysis components, which are not yet reliable because they are based on very pre-
liminary training data, will be substantially improved by the availability of suitable training
data;

● visual analysis code (facial expression, gaze, head actions) will be added;

● the generation components will use specific facial models and synthetic voices for the SAL
characters Poppy, Spike, Obadiah and Prudence;

● the architecture will be closer to real-time behaviour.

page 5 of 36 ICT FP7 Contract no. 211486

http://www.semaine-project.eu/
http://www.semaine-project.eu/
http://www.semaine-project.eu/

SEMAINE D1b

2 System architecture: Components and representation
formats
A conceptual system architecture is the first step towards a running system, and clarity on this level
makes a well-structured implementation possible. Therefore, some care was invested to identify a
conceptual system architecture that lends itself to implementation and that has the properties re-
quired by the application. The resulting conceptual system architecture is depicted in Figure 1.

Figure 1: Architecture of the initial SEMAINE system

2.1 Overview of the conceptual architecture
Processing components are represented as ovals, data representations as rectangles. Arrows are al-
ways between components and data, and indicate which data is produced by or is accessible to
which component.

It can be seen that the rough organisation follows the simple tripartition of input (left), central pro-
cessing (middle), and output (right), and that arrows indicate a rough pipeline for the data flow,
from input analysis via central processing to output generation. Note that this is a deliberate simpli-
fication at this stage, and is identified as a point for future improvement (Schröder et al., 2008).

The main aspects of the architecture are outlined as follows. Feature extractors analyse the low-
level audio and video signals, and provide feature vectors periodically to the following components.
A collection of analysers, such as monomodal or multimodal classifiers, produce a context-free,
short-term interpretation of the current user state, in terms of behaviour (e.g., a smile) or of epistem-
ic-affective states (emotion, interest, etc.). These analysers usually have no access to centrally held
information about the state of the user, the agent, and the dialog; only the speech recognition needs
to know about the dialog state, whether the user or the agent is currently speaking.

page 6 of 36 ICT FP7 Contract no. 211486

Action selection

Action proposersAction proposersAction proposers

user state agent statedialog state

Action proposersAction proposersInterpreters

features

feature extractors

analysers

candidate
action

FML2BML

action

BML realiser

behaviour
plan

player

behaviour
data

SEMAINE D1b

A set of interpreter components evaluate the short-term analyses of user state in the context of the
current state of information regarding the user, the dialog, and the agent itself, and update these in-
formation states.

A range of action proposers produce candidate actions, independently from one another. An utter-
ance producer will propose the agent's next verbal utterance, given the dialog history, the user's
emotion, the topic under discussion, and the agent's own emotion. An automatic backchannel gener-
ator identifies suitable points in time to emit a backchannel. A mimicry component will propose to
imitate, to some extent, the user's low-level behaviour. Finally, a non-verbal behaviour component
needs to generate some “background” behaviour continuously, especially when the agent is listen-
ing but also when it is speaking.

The actions proposed may be contradictory, and thus must be filtered by an action selection com-
ponent. A selected action is converted from a description in terms of its functions into a behaviour
plan, which is then realised in terms of low-level data that can be used directly by a player.

Similar to an efferent copy in human motor prediction (Wolpert & Flanagan, 2001), behaviour data
is also available to feature extractors as a prediction of expected perception. For example, this can
be used to filter out the agent's speech from the microphone signal.

2.2 Representation formats
This conceptual architecture is rather independent of the concrete implementation components used
to implement certain conceptual components in this architecture. For example, the architecture re-
mains basically the same whether there are feature extractors for multiple modalities or just for indi-
vidual modalities; action proposers may or may not include a backchannel component or a mimicry
component; output may be unimodal or multimodal; analysers can recognise individual epistemic-
affective states (interest, arousal, etc.) or a collection of them, from single or multiple modalities.

For all implementations, however, the representation formats used at the component interfaces
should be the same, to allow for the type of modular design that the conceptual architecture as-
sumes. SEMAINE has decided to follow standard representation formats where possible. The fol-
lowing sections characterise the data representations used at the various points in the architecture.
Each section describes

● the meaning of the given type of data in the context of the architecture;

● the JMS Topics associated with these data types in the SEMAINE API (see Section 3);

● the representation format used for that data, pointing to the specifications or draft specifica-
tions where that is possible.

2.2.1 Features
Meaning All audio and video low-level features, produced by various components in each

case. All features are produced periodically, but periods may vary from one
component to the other.

JMS Topics semaine.data.analysis.>, including semaine.data.analysis.audio.> and
semaine.data.analysis.video.>

Representation
format

Feature vector in text form or in binary form. All features are float-valued. In
text form, the feature vector consists of one line per feature; the line first shows

page 7 of 36 ICT FP7 Contract no. 211486

SEMAINE D1b

the float value of the feature, a space character, and the feature name. In binary
representation, the feature vector uses a byte array, using four bytes per feature,
preceded by four bytes representing an integer which contains the number of
features in the feature vector.
Binary feature messages do not contain feature names. Therefore, when the
system becomes ready, components sending feature vectors should send the first
feature vector in text format, so that receivers can know the feature names.

2.2.2 User data: signals
Meaning A range of descriptions of user state, including lower-level, short-term classifier

output and re-interpreted abstractions over longer periods (words, sentences).

JMS Topics semaine.data.state.user.emma

Representation
format

Container format: EMMA (http://www.w3.org/TR/emma/).
Message payload, describing the user state as determined by analysers and
interpreters:

● for epistemic-affective states: EmotionML
(http://www.w3.org/2005/Incubator/emotion/XGR-emotionml/);

● for behaviour: SemaineML (see Appendix I);
● for speech recognition results: SemaineML or EMMA.

2.2.3 User data: behaviours
Meaning The current-best-guess values for behaviour (smiling, speaking, …). These are

interpretations of the signals.

JMS Topics semaine.data.state.user.behaviour

Representation
format

SemaineML (see Appendix I)

2.2.4 User data: intentions
Meaning The current-best-guess values for the user's intentions and mental state (intention

to keep the turn, interest level, emotion, ...). These are interpretations of the
signals.

JMS Topics semaine.data.state.user.intention

Representation
format

SemaineML (see Appendix I)

2.2.5 Dialog state
Meaning Current best guess values for various dialog states.

JMS Topics semaine.data.state.dialog.>

Representation
format

SemaineML (see Appendix I)

page 8 of 36 ICT FP7 Contract no. 211486

http://www.w3.org/2005/Incubator/emotion/XGR-emotionml/
http://www.w3.org/2005/Incubator/emotion/XGR-emotionml/
http://www.w3.org/2005/Incubator/emotion/XGR-emotionml/
http://www.w3.org/TR/emma/
http://www.w3.org/TR/emma/
http://www.w3.org/TR/emma/

SEMAINE D1b

2.2.6 Agent intentions
Meaning Current best guess values for various agent state variables including intentions

and mental state (intention to grab the turn, attitude towards a topic, the agent's
emotion, interest level, …)

JMS Topics semaine.data.state.agent.intention

Representation
format

SemaineML (see Appendix I)

2.2.7 Agent behaviours
Meaning Feedback about actions that have been carried out. To be filled in by action

proposers after they receive confirmation that an action has been carried out.

JMS Topics semaine.data.state.agent.behaviour

Representation
format

SemaineML (see Appendix I)

2.2.8 Candidate action
Meaning Proposals for action.

JMS Topics semaine.data.action.candidate.>, including
semaine.data.action.candidate.function and
semaine.data.action.candidate.behaviour

Representation
format

FML (see Appendix II) or BML (see Appendix III)

2.2.9 Action
Meaning Selected action to be generated.

JMS Topics semaine.data.action.selected.>, including
semaine.data.action.selected.function and
semaine.data.action.selected.behaviour

Representation
format

FML (see Appendix II) or BML (see Appendix III)

2.2.10 Behaviour plan
Meaning An atomic chunk of behaviour markup for generation.

JMS Topics semaine.data.synthesis.plan.>

Representation
format

BML (see Appendix III)

2.2.11 Behaviour data
Meaning Low-level data ready to be played by the player.

page 9 of 36 ICT FP7 Contract no. 211486

SEMAINE D1b

JMS Topics semaine.data.synthesis.lowlevel.>, including
semaine.data.synthesis.lowlevel.audio.> and
semaine.data.synthesis.lowlevel.video.>

Representation
format

audio data and FAP+BAP parameters

page 10 of 36 ICT FP7 Contract no. 211486

SEMAINE D1b

3 The SEMAINE API
The SEMAINE API is the communication infrastructure for the components in the SEMAINE sys-
tem. It provides the services of a message-oriented middleware (Banavar, Chandra, Strom, & Stur-
man, 1999), allowing communication across various programming languages and operating sys-
tems, in terms of the data representations needed in SEMAINE.

For the realisation of low-level message routing, the Java Message Service (JMS) implementation
ActiveMQ (http://activemq.apache.org/) was chosen. We compared it in terms of performance with
Psyclone (http://www.mindmakers.org/projects/Psyclone), and it appeared that ActiveMQ was at
least one order of magnitude faster than Psyclone. In a number of simple tests, passing a simple
message from one process to another took about 0.4 ms with ActiveMQ, and 15 ms with Psyclone
(averaged over 1000 iterations with slightly different message content each time) – a factor of 40 in
this test.1

ActiveMQ has the practical benefits of being an open source project actively developed at the
Apache Foundation, and of providing client code in various programming languages, including Java
and C++, the languages used by SEMAINE partners. ActiveMQ is available on many platforms, in-
cluding Linux, Mac OS X and Windows.

ActiveMQ provides, among other things, a publish-subscribe communication model. The entities
that client code publishes to, or subscribes from, are called Topics, and are identified by names.
Hierarchies of topics are defined by the use of dots; subscription can use wildcards to subscribe to
entire topic families. For example, a subscription to the Topic family semaine.data.action.se-
lected.> will yield messages published to, e.g., semaine.data.action.selected.function and
semaine.data.action.selected.behaviour.

The SEMAINE API provides abstractions from the low-level ActiveMQ handling code, in order to
facilitate the communication of data in relevant representation formats between processing compon-
ents. There are two versions of the SEMAINE API:

● a Java version, based on Java 6;

● a C++ version, providing build files for Microsoft Visual Studio 2005 on Windows and
build for GNU automake/autoconf on Linux and Mac OS X.

The C++ version is very similar to the Java version, using C++ namespaces to reflect Java pack-
ages. This approach promotes the aim of having one consistent development environment across
programming languages and operating systems. The following sections will illustrate the key prop-
erties of the SEMAINE API, using the Java syntax.

3.1 Message routing: Receiver, Sender and their subclasses
Receivers and Senders provide the SEMAINE view on subscription and publishing, respectively. A
Receiver can subscribe to a certain Topic family and start receiving messages as in the following
example using the simple synchronous model of message reception:

1 Further investigations, on the other hand, have provided evidence that ActiveMQ is too slow for sending large
amounts of binary video data. Therefore, ActiveMQ seems appropriate for message routing in the SEMAINE
architecture, but not appropriate for communicating raw input data between components. This seems to be a
marginal requirement for the SEMAINE architecture – it would only concern situations where multiple feature
extractors should be applied to the same input data. In those cases, alternative methods for message passing need to
be used.

page 11 of 36 ICT FP7 Contract no. 211486

http://www.mindmakers.org/projects/Psyclone
http://www.mindmakers.org/projects/Psyclone
http://www.mindmakers.org/projects/Psyclone
http://activemq.apache.org/
http://activemq.apache.org/
http://activemq.apache.org/

SEMAINE D1b

import eu.semaine.jms.receiver;
import eu.semaine.jms.message.SEMAINEMessage;
...
Receiver r = new Receiver(“semaine.data.action.selected.>”);
r.startConnection();
while (true) {
 SEMAINEMessage m = r.receive();
 ... // do something meaningful with the message
}

An alternative and more flexible way of using a Receiver is to register a SEMAINEMessageListen-
er, which will be called in a separate thread, every time that a message is received. For example:

import eu.semaine.jms.receiver.Receiver;
import eu.semaine.jms.message.SEMAINEMessage;
...
Receiver r = new Receiver(“semaine.data.action.selected.>”);
r.startConnection();
SEMAINEMessageAvailableListener listener =
 new SEMAINEMessageAvailableListener() {
 public void messageAvailableFrom(Receiver rec) {
 SEMAINEMessage m = rec.getMessage();
 ... // do something meaningful with the message
 }
};
r.setMessageListener(listener);
// do something else in this thread

The default method for sending a message using a Sender is equally simple.

import eu.semaine.jms.sender.Sender;
...
Sender s = new Sender(“semaine.data.action.selected.behaviour”, “BML”, “Demo
sender”);
s.startConnection();
long time = System.currentTimeMillis();
String text = “<?xml version=\"1.0\" encoding=\"UTF-8\"?>” +
 “<bml xmlns=\"http://www.mindmakers.org/projects/BML\" version=\"1.0\">” +
 “<head type=\"NOD\"/>” +
 “</bml>”;
s.sendTextMessage(text, time);

In principle, this functionality would be sufficient for enabling components to communicate. To
simplify communication and to support consistent representations, however, the SEMAINE API
provides a number of convenience classes representing the kinds of data that are required in the SE-
MAINE architecture.

In the package eu.semaine.jms.receiver, there are a number of subclasses of Receiver, producing
various subclasses of SEMAINEMessage from the package eu.semaine.jms.message:

● a BytesReceiver, for binary data, produces SEMAINEBytesMessage objects;

● a FeatureReceiver, for feature vectors, produces SEMAINEFeatureMessage objects;

● an XMLReceiver, as a base class for all XML representations, produces SEMAINEXM-
LMessage as a base class for specific XML-based messages:

○ EmmaReceiver produces SEMAINEEmmaMessage,

○ BMLReceiver produces SEMAINEBMLMessage, etc.

page 12 of 36 ICT FP7 Contract no. 211486

SEMAINE D1b

User code can use these receivers to work with the data on a higher degree of abstraction. For ex-
ample, receiving feature vectors using a FeatureReceiver:

import eu.semaine.jms.receiver.FeatureReceiver;
import eu.semaine.jms.message.SEMAINEFeatureMessage;
...
FeatureReceiver r = new FeatureReceiver(“semaine.data.action.selected.>”);
r.startConnection();
while (true) {
 SEMAINEFeatureMessage m = (SEMAINEFeatureMessage) r.receive();
 String[] featureNames = m.getFeatureNames();
 float[] features = m.getFeatureVector();
 ...
}

Similarly, subclasses of Sender can be used for sending data in different relevant formats:

● a BytesSender can be used to send binary data;

● a FeatureSender can be used to send feature vectors;

● an XMLSender is a base class for sending XML data; subclasses include

○ EmmaSender,

○ BMLSender, etc.

User code can use these senders directly, e.g. to send XML data directly from a W3C DOM repres-
entation:

import eu.semaine.jms.sender.BMLSender;
import org.w3c.dom.Document;
...
BMLSender s = new BMLSender(“semaine.data.action.selected.behaviour”, “Demo
sender”);
s.startConnection();
long time = System.currentTimeMillis();
Document bmlDocument = ...; // some way of creating a BML document
s.sendXML(bmlDocument, time);

3.2 Component
A SEMAINE Component is a processing entity which performs a certain processing step. It corres-
ponds to one of the ovals in Figure 1. In general, it can receive data from zero, one or several Top-
ics, and it can send data to zero, one or several Topics. It can either act spontaneously due to some
internal logic, or it can react to incoming messages.

The class eu.semaine.components.Component provides a base implementation for all SEMAINE
components. It is designed to run as its own thread. It has a list of Receiver and Sender objects
which are initialised in the constructor; for each of the Receivers, the component registers as a SE-
MAINEMessageAvailableListener, so that the component is notified whenever a message is avail-
able in any of its receivers.

In its main loop, implemented in Component.run(), the component does the following steps re-
peatedly:

● it calls the method act();

page 13 of 36 ICT FP7 Contract no. 211486

SEMAINE D1b

● it checks for any incoming messages on any of its receivers, waiting for a maximum amount
of time waitingTime (this amount can be configured as a number of milliseconds);

● if any messages arrive, it stops waiting and calls react(SEMAINEMessage) immediately.

As a result, the main loop calls act() at least every waitingTime milliseconds, and calls
react(SEMAINEMessage) every time a message is received.

Subclasses of Component need to register the Receivers and Senders they need, and must imple-
ment act(), react() or both in order to do something meaningful. The following simple compon-
ent reacts to every BML message by passing it on, thus implementing a trivial action selector for
BML actions2:

public class PassOnBML extends Component
{
 BMLSender bmlSender;
 public PassOnBML()
 {
 super(“PassOnBML”);
 BMLReceiver bmlReceiver =
 new BMLReceiver(“semaine.data.action.candidate.behaviour”);
 receivers.add(bmlReceiver);
 bmlSender = new BMLSender(“semaine.data.action.selected.behaviour”,
 getName());
 senders.add(bmlSender);
 }

 protected void react(SEMAINEMessage m)
 {
 Document bml = ((SEMAINEXMLMessage) m).getDocument();
 bmlSender.sendXML(bml, m.getUserTime());
 }
}

The following component sends a message when a certain idle time has passed without any new
messages.

public class IdleActionProposer extends Component
{
 BMLSender bmlSender;
 long lastMessageTime;
 long maxIdleTime = 4000; // four seconds

 public IdleActionProposer()
 {
 super(“IdleActionProposer”);
 BMLReceiver bmlReceiver =
 new BMLReceiver(“semaine.data.action.candidate.behaviour”);
 receivers.add(bmlReceiver);
 bmlSender = new BMLSender(“semaine.data.action.candidate.behaviour”,
 getName());
 senders.add(bmlSender);
 }

 protected void react(SEMAINEMessage m)
 {
 lastMessageTime = m.getUserTime();
 }

 protected void act()

2 The example code leaves out import statements and exception handling so as to maintain clarity.

page 14 of 36 ICT FP7 Contract no. 211486

SEMAINE D1b

 {
 long currentTime = meta.getTime();
 if (currentTime – lastMessageTime > maxIdleTime) {
 Document someBMLMessage = ...; // create some message
 bmlSender.sendXML(someBMLMessage, currentTime);
 lastMessageTime = currentTime;
 }
 }
}

3.3 ComponentRunner
The ComponentRunner is a convenience class for running several components in a single execut-
able. In java, the list of components can be given in a config file.

ComponentRunner runner = new ComponentRunner(“my-system.config”);
runner.go();
runner.waitUntilCompleted(); // add this if you want to block

The file “my-system.config” should have content similar to the following:

SEMAINE component runner config file
semaine.components = \
 |eu.semaine.components.meta.SystemManager| \
 |eu.semaine.components.dummy.DummyFeatureExtractor| \
 |eu.semaine.components.dummy.DummyAnalyser| \
 |eu.semaine.components.dummy.DummyInterpreter| \
 |eu.semaine.components.dummy.DummyFMLActionProposer| \
 |eu.semaine.components.dummy.DummyBMLActionProposer| \
 |eu.semaine.components.dummy.DummyActionSelection| \
 |eu.semaine.components.dummy.DummyFML2BML| \
 |eu.semaine.components.dummy.DummyBMLRealiserAndPlayer| \
 |eu.semaine.components.MessageLogComponent($semaine.messagelog.topic,
$semaine.messagelog.messageselector)|

semaine.messagelog.topic = semaine.data.>
semaine.messagelog.messageselector = event IS NOT NULL

In this file, components are listed as the values of the property semaine.components, and separated
by “|” characters. Each component must be a subclass of eu.semaine.components.Component. A
component's constructor can have zero, one or more String-valued arguments, which can be given
in brackets in the config file. If the value starts with a “$” sign, then the value of the given property
from the same config file is used; else, the value given is interpreted as a literal string value. In the
example given, all components have a zero-argument constructor except for MessageLogCompon-
ent, which has two string-valued arguments; here, both are read from property entries. The con-
structor is effectively called as new MessageLogComponent(“semaine.data.>”, “event IS NOT
NULL”).

In C++, which does not easily support reflection (i.e., instantiation of a class by its name), the com-
ponents need to be given explicitly in the code.

std::list<semaine::components::Component *> comps;
comps.push_back(new semaine::components::dummy::DummyFeatureExtractor());
// Add any additional components here
semaine::system::ComponentRunner cr(comps);
cr.go();
cr.waitUntilCompleted(); // add this if you want to block

page 15 of 36 ICT FP7 Contract no. 211486

SEMAINE D1b

3.4 Meta messages and the System Manager
The SEMAINE architecture could function as a totally distributed system, in which a component
does not need to know anything about other components – not even about their existence. The flaws
of such a fully emergent system become apparent at the moment when something goes wrong:
maybe a component did not start up properly, or failed due to some unexpected circumstances. In a
fully distributed system, such a situation may not easily be noticed.

In order to keep track of the state of the overall system and of individual components, a special-
ised component exists: the System Manager (eu.semaine.components.meta.SystemManager).
Each component has a meta messenger (eu.semaine.components.meta.MetaMessenger) commu-
nicating with the system manager. The meta messenger informs the system manager of any state
changes in the component (starting, ready, stopped, failure, and stalled); the system man-
ager informs the meta messenger of the state of the system as a whole (in the simplest form, a sum-
mary whether all components in the system are ready or not).

A component then has the choice how to react to the information that the system is not fully opera-
tional. In the simplest form, components can pause processing until all components are ready.

In a SEMAINE system, there must be exactly one SystemManager component. For this reason,
there is only a Java implementation of SystemManager, not a C++ version. The MetaMessenger, on
the other hand, obviously needs to exist for every component, so there is a Java and a C++ version
like for most parts of the SEMAINE API code.

A second function of meta messages is the synchronisation of time across different machines
whose system clocks may be set differently. The system manager informs all components of a com-
mon system time, through their respective meta messengers. Components should therefore access
time exclusively by calling

long timeInMilliseconds = meta.getTime();

Communication between the System Manager and the meta messengers is happening via the Topic
family semaine.meta.>.

Optionally, a Graphical User Interface (GUI) to the System Manager, the SEMAINE System Monit-
or, can be used to display information about the system. This includes the components active in the
system as well as the Topics they read from and write to. The GUI also contains a summary report
of the overall system state, and a configurable view of the centralised logging facility (see next sec-
tion). When the user clicks on a Topic, a new window opens which displays the messages sent to
that Topic. When the user clicks on a component, a window shows the detailed status of that com-
ponent. Color is used to show active Topics as well as the state of individual components. The lay-
out of components and Topics is created on the fly, using the Topics that components send to or re-
ceive from in order to sort components into an approximately meaningful order, starting with input
components in the lower left and ending with output components in the lower right. Figure 2 shows
an example screenshot of the GUI.

In summary, the GUI is designed to provide the developer with a live overview of the system, and
help identify and diagnose problems or unexpected situations comfortably.

page 16 of 36 ICT FP7 Contract no. 211486

SEMAINE D1b

Figure 2: Screenshot of the SEMAINE System Monitor GUI for the System Manager

3.5 Centralised logging
In a distributed system, it is not trivial to keep track of things happening. A centralised log function-
ality alleviates the problem by creating a single central place where all components can write their
log messages, no matter what programming language and what operating system they use.

This functionality is provided by the JMSLogger in Java and the CMSLogger in C++. Effectively,
they are sending ActiveMQ messages to topics below semaine.log.> according to the scheme se-
maine.log.Source.LogLevel, where Source is a meaningful identifier (e.g., the name of the com-
ponent logging) and LogLevel reflects the severity of the message (one of error, warn, info and
debug). For example, the following will write a message “Hello world” to the Topic semaine.lo-
g.MyDummy.info:

JMSLogger log = JMSLogger.getLogger(“MyDummy”);
log.info(“Hello world”);

A simple text-based log reader can be used to display all or certain log messages:
eu.semaine.jms.JMSLogReader.

3.6 XML handling
Many of the messages in the SEMAINE architecture are using XML as a representation format,
combining and mixing various XML namespaces. As namespace-aware XML processing can some-
times be difficult to get right, the SEMAINE API provides a powerful utility class to do XML pro-

page 17 of 36 ICT FP7 Contract no. 211486

SEMAINE D1b

cessing in the Document Object Model (DOM) framework: eu.semaine.util.XMLTool. The
Xerces library from the Apache foundation is used because it adheres to W3C standards and it ex-
ists in a Java and a C++ version (http://xerces.apache.org/xerces-j/ and http://xerces .
apache.org/xerces-c/, respectively).

For example, the following code creates an EMMA document containing a SemaineML <beha-
viour> tag:

Document document = XMLTool.newDocument(EMMA.E_EMMA,
EMMA.namespaceURI, EMMA.version);

Element interpretation = XMLTool.appendChildElement(
document.getDocumentElement(), EMMA.E_INTERPRETATION);

Element behaviour = XMLTool.appendChildElement(interpretation,
SemaineML.E_BEHAVIOUR, SemaineML.namespaceURI);

interpretation.setAttribute(EMMA.A_START, String.valueOf(meta.getTime()));
behaviour.setAttribute(SemaineML.A_NAME, "gaze-away");
behaviour.setAttribute(SemaineML.A_INTENSITY, "0.9");

Again, the C++ code looks essentially the same – only, in C++, the XML code needs to be initial-
ised and finalised properly.

XMLTool::startupXMLTools();
...
DOMDocument * document = XMLTool::newDocument(EMMA::E_EMMA,

EMMA::namespaceURI, EMMA::version);
DOMElement * interpretation = XMLTool::appendChildElement(

document->getDocumentElement(), EMMA::E_INTERPRETATION);
DOMElement * behaviour = XMLTool::appendChildElement(interpretation,

SemaineML::E_BEHAVIOUR, SemaineML::namespaceURI);
std::stringstream buf;
buf << fm->getUsertime();
std::string usertimeString = buf.str();
XMLTool::setAttribute(interpretation, EMMA::A_START, usertimeString);
XMLTool::setAttribute(behaviour, SemaineML::A_NAME, "gaze-away");
XMLTool::setAttribute(behaviour, SemaineML::A_INTENSITY, "0.9");
...
XMLTool::shutdownXMLTools();

The resulting XML document is the following:

<?xml version="1.0" encoding="UTF-8"?>
<emma xmlns="http://www.w3.org/2003/04/emma" version="1.0">
 <interpretation start="75838">
 <behaviour xmlns="http://www.semaine-project.eu/semaineml" intensity="0.9"
name="gaze-away"/>
 </interpretation>
</emma>

page 18 of 36 ICT FP7 Contract no. 211486

http://xerces.apache.org/xerces-c/
http://xerces.apache.org/xerces-c/
http://xerces.apache.org/xerces-c/
http://xerces.apache.org/xerces-c/
http://xerces.apache.org/xerces-c/
http://xerces.apache.org/xerces-c/
http://xerces.apache.org/xerces-c/
http://xerces.apache.org/xerces-c/
http://xerces.apache.org/xerces-c/
http://xerces.apache.org/xerces-j/
http://xerces.apache.org/xerces-j/
http://xerces.apache.org/xerces-j/

SEMAINE D1b

4 The first integrated system demonstrator
The first integrated SEMAINE system uses the SEMAINE API across operating systems and pro-
gramming languages to implement the SEMAINE architecture, essentially based on existing com-
ponents which were adapted to run in the SEMAINE framework. The following table gives a short
overview of the components involved.

Component Architectural role Team OS Language
low-level audio
features feature extractor TUM Linux/Mac C++
emotion detection analyser TUM Linux/Mac C++
ASR analyser TUM Linux C++
interest detection analyser TUM Linux/Mac C++
turn taking interpreter UT any Java
user utterance
interpreter interpreter UT any Java
agent utterance
proposer action proposer UT any Java
backchannel/mimicry action proposer Paris Windows C++3

action selection Paris Windows C++
speech preprocessing (part of FML2BML) DFKI any Java

FML2BML Paris Windows C++
speech synthesis (part of BML realiser) DFKI any Java

BML realiser Paris Windows C++
Greta player Paris Windows C++

4.1 Individual system components
The following sections briefly describe the individual system components.

4.1.1 Low-level audio features
The openSMILE (Speech and Music Interpretation by Large-Space Extraction) feature extractor
was written in ANSI C. The SEMAINE architecture API provides a C++ interface. Thus, C++
wrapper classes were written for openSMILE's ANSI C components. Both, a standalone version of
openSMILE and a SEMAINE component version of SMILE were provided. The SMILE feature ex-
tractor has built-in audio capture functionality relying on the PortAudio library. SMILE's architec-
ture is highly modular while maintaining a high level of efficiency. New features and new signal
processing function can be easily integrated. All audio signal processing and feature extraction is
incremental, i.e. it is done frame by frame.

SMILE is capable of extracting low-level audio features (i.e. features derived directly from the sig-
nal) from overlapping frames of arbitrary size and overlap. The 38 low-level features that were im-
plemented during the first project year are listed in Appendix IV. Basing on the low-level feature
contours, delta coefficients of arbitrary order and statistical functionals in arbitrary hierarchies can
be computed using SMILE (see Appendix V). In total 5,700 turn based features can be computed,

3 Components that are displayed in grey (backchannel/mimicry action proposer, action selection, and FML2BML) are
ready but have not yet been integrated into the first demonstrator.

page 19 of 36 ICT FP7 Contract no. 211486

SEMAINE D1b

when using the standard configuration where delta and acceleration coefficients are appended to the
low-level features. There is, however, no upper limit regarding the maximum number of features
that can be generated, except due to computing resource limitations. Adding higher order regression
coefficients and multiple hierarchies of statistical functionals can push the number of generated fea-
tures beyond 1 million features.

SMILE supports real-time, on-line stream processing, where audio data is read from a stream
source, either a pipe or network stream or audio capture device. Features are output as soon as they
become available. Direct interfacing with classifiers for real-time on-line classification of generated
features is possible. Further, off-line chunk processing is supported, whereas features can be output
in various widely used formats such as WEKA ARFF files, CSV files, LibSVM format files, and
HTK feature files. SMILE has integrated voice activity detection based on energy and pitch fea-
tures. This allows robust distinction of background noise and non-speech sounds from actual speech
uttered by the user.

4.1.2 Emotion detection
The SMILE automatic emotion recognition (AER) component is a consequent extension of existing
knowledge in the field of emotion recognition. After the extraction of large and open sets of hier-
archical audio features, a feature selection is performed in order to find the most relevant features
for the task of interest. Finally, a classifier (e.g. Support-Vector Machines, Multi-Layer Perceptron,
Naive Bayes, K Nearest-Neighbour, etc.) or a regression method, e.g. Support-Vector Regression
(SVR), is applied on the reduced feature vector.

Based on the findings in Wöllmer (2008), models for on-line emotion recognition were trained.
Even though Long Short-Term Memory Recurrent Neural Nets performed better than SVR, for the
on-line recognition application SVR are used due to easier integration in an on-line recognition
framework. Using the openSMILE feature extraction, 5,700 features were extracted for each turn in
the SAL recordings. The turns thereby were segmented by energy thresholds and the maximum turn
length was limited to 10 seconds. A correlation-based feature sub-set selection was performed to
find an optimal and reduced set of features for valence and activation separately. 32 features remain
as relevant for activation, and 212 features for valence. Building on those reduced feature sets and
the Feeltrace annotations of the SAL recordings, Support-Vector Regression models were trained,
one model for each emotion dimension.

4.1.3 ASR
The Automatic Speech Recognition component for the Milestone 2 system is based on the ATK
(http://htk.eng.cam.ac.uk/develop/atk.shtml) real-time speech recognition engine which is a C++
layer sitting on top of HTK (http://htk.eng.cam.ac.uk/). During the development of the ASR com-
ponent, the engine was designed and parametrised as an optimal trade-off between accuracy and de-
coding time. The Milestone 2 ASR component processes cepstral mean normalised Mel-Frequency
Cepstral Coefficients 0-12 as well as their first and second order temporal derivatives at a frame rate
of 10 ms. It uses word-internal tri-phones for acoustic modelling and tri-gram language modelling.
Along with the recognised string, the mean word-confidence is output.

The speaker independent tri-phone tied-state Hidden Markov Models were trained on the Wall
Street Journal corpus and on the AMIDA Meeting corpus, since the preliminary SAL corpus con-
tains only four different speakers which is not enough to train speaker independent acoustic models.
Phoneme models consist of three emitting states with eight Gaussian mixtures per state. The tri-

page 20 of 36 ICT FP7 Contract no. 211486

SEMAINE D1b

gram language model was trained on the preliminary SAL corpus and therefore included about 1900
words which typically occur in spontaneous emotionally coloured speech. Further, language models
based on both, the SAL corpus and other transcriptions of spontaneous speech such as the AMIDA
Meeting corpus or scripts of various TV-Series, were trained.

4.1.4 Interest detection
The module for recognition of human interest was trained on the AVIC (TUM) database. This data-
base contains data of a real-world scenario where an experimenter leads a subject through a com-
mercial presentation. The subject interacted with the experimenter and thereby naturally and spon-
taneously expressed different levels of interest.

The openSMILE feature extraction was used to extract 5,700 features serving as a basis for sub-
sequent correlation-based feature sub-set selection. A total of 128 features remained after feature se-
lection and were used to train Support Vector Machines. The module discriminates three different
levels of interest (LOI): “bored” (LOI 0), “neutral” (LOI 1), and “high interest” (LOI 2).

4.1.5 Turn taking
Turn taking is a very complex conversational system in which the participants negotiate who will be
the next main speaker in the next period. But, being too complex for the first demonstrator system a
simplified version was created. The demonstrator needs a simple turn taking mechanism in order to
detect that the human speaker finished speaking, so that it can give a response.

Currently it waits for user_speaking and user_silent messages from low-level audio features. When
the user is silent for more than 2 seconds the system decides that SAL has the turn. It then sends this
turn-information to the Dialog state.

4.1.6 User utterance interpreter
When the turn taking module decides that the agent has the turn the system will analyse what the
user did and said. Eventually this will happen continuously to speed up the response time, but cur-
rently this starts when the agent takes the turn. When this happens, the User utterance interpreter
will look at the utterances of the user that were detected in the previous turn. The utterances are
then tagged with general semantic features such as the semantic polarity (if the user is positive or
negative about something), the time (talking about the future or the past), and the subject of the ut-
terances (if it's the user himself, the current character he's speaking to, or other people). This exten-
ded sentence is then send to the user.behaviour channel. If no sentence was detected it will send an
empty string.

4.1.7 Agent utterance proposer
The function of the agent utterance proposer is to select an appropriate response when the agent has
to say something. It starts working when it receives an extended user utterance from the user utter-
ance interpreter, because in the current system this also means that the agent has the turn. Using the
added features it searches its response model for responses that fit the current context. This response
model is based on the transcripts of the WOz-data and contains fitting contexts (i.e. a list of semant-
ic features) for every possible response. When an empty string is detected it will pick a response
from a list of generic responses which fit it almost all circumstances. Finally, the chosen response is

page 21 of 36 ICT FP7 Contract no. 211486

SEMAINE D1b

send as a proposed action to the action selection module and a message is send to the turn taking
module to set the turn to the user again.

4.1.8 Backchannel/Mimicry action proposer
The backchannel action proposer is in charge of the computation of the agent's behaviours while be-
ing a listener when conversing with a user. This component encompasses three modules called re-
active backchannel, cognitive backchannel, and mimicry. Research has shown that there is a strong
correlation between backchannel signals and the verbal and nonverbal behaviours performed by the
speaker (Maatman, Gratch & Marsella, 2005) (Ward, & Tsukahara, 2000). Models have been elab-
orated that predict when a backchannel signal can be triggered based on a statistical analysis of the
speaker's behaviours (Maatman, Gratch & Marsella, 2005) (Morency, L.-P, de Kok, & Gratch,
2008) (Ward, & Tsukahara, 2000). We use a similar approach and have fixed some probabilistic
rules to prompt a backchannel signal when our system recognizes certain speaker's behaviours; for
example, a head nod or a variation in the pitch of the user's voice will trigger a backchannel with a
certain probability. Probabilities are set based on studies from the literature (Maatman, Gratch &
Marsella, 2005) (Ward, & Tsukahara, 2000). The reactive backchannel module takes care of this
predictive model. On the other hand, the cognitive backchannel module computes when and which
backchannel should be displayed using information about the agent's beliefs towards the speaker's
speech. We use Allwood's taxonomy of communicative functions of backchannels (Allwood, Nivre
& Ahlsén, 1993): contact, perception, understanding, attitudinal reactions. From a previous study
(Bevacqua, Heylen, Tellier, & Pelachaud, 2007) (Heylen, Bevacqua, Tellier, & Pelachaud, 2007) we
have elaborated a lexicon of backchannels. The cognitive module selects which signals to display
from the lexicon depending on the agent's reaction towards the speaker's speech. The third module
is the mimicry module. When fully engaged in an interaction, mimicry of behaviours between inter-
actants may happen (Lakin, Jefferis, Cheng, & Chartrand, 2003). This module determines when and
which signals would mimic the agent. So far we are considering solely speaker's head movement in
the signals to mimic. A selection algorithm determines which backchannels to display among all the
potential signals that are outputted by three modules.

4.1.9 Action selection
The aim of the action selection module is to choose the most appropriated action according to the
perception and the mental states of the ECA at every moment in time. Each action proposer will
generate priorities for their actions and send all available actions with their priorities to the action
selection mechanism without making choices between conflicting ones. We are inspirited from the
free flow hierarchy (Tyrrell, 1993; de Sevin, 2006). The key idea is that, during the propagation of
the activity in the hierarchy, no decisions are made before the lowest level in the hierarchy, repre-
sented by the actions, is reached. The action selection mechanism of the agent has to manage the
priorities of actions according to the user’s level of interest (estimated by the agent), its own level
interest and its personality. All these modulations of priorities are normalized to keep control of the
decision-making. Some actions are not useful in the context of the action proposer but can be im-
portant in the global context of the ECA. For instance, the priority of smiling can be higher than the
one of nodding, but in the end the ECA wants to show agreement. In this case, nodding is more ap-
propriated even so its priority is lower. In the end, cognitive backchannels will always have the pri-
ority over the reactive ones because they take into account the mental state of the agent. The action
selection module modulates the action priorities to endow the ECA to have more flexibility and
adaptability in its decision-making in real-time.

page 22 of 36 ICT FP7 Contract no. 211486

SEMAINE D1b

4.1.10 Speech preprocessing
The speech preprocessing component is part of the FML2BML conceptual component in the SE-
MAINE architecture. It uses the MARY TTS system (Schröder, Charfuelan, Pammi, & Türk,
2008) to add pitch accent and phrase boundary information to FML documents in preparation of the
realisation of functions in terms of visual behaviour.

For FML messages containing a <speech> element, the component partially synthesises the textual
content, and identifies the number and locations of pitch accents as well as phrase boundaries pre-
dicted by the MARY system. The locations of accents and boundaries are inserted into the FML
document as the non-standard extension elements <pitchaccent> and <boundary>, respectively.

4.1.11 FML2BML
The FML2BML takes as input both the agent's communicative intentions specified by the FML-
APML language and some agent's characteristics. The main task of this component is to select, for
each communicative intention, the adequate set of behaviours to display. The output of FML2BML
is described in the BML language. It contains the sequence of behaviours with their timing informa-
tion to be displayed by our virtual agent. The agent is characterized by its general tendency to be-
have. These characteristics are at the level of behaviours and not at the emotional or personality
level, even though both levels are intrinsically correlated. The agent's general behaviour tendency is
represented by the agent's baseline. This last one contains information on the preference the agent
has in using its communicative modalities (head, gaze, face, gesture and torso) and on the express-
ive quality of each of them. Expressivity is defined by a set of parameters that affect the qualities of
the agent's behaviour (e.g. wide vs. narrow gestures). The system uses the agent's baseline to com-
pute how a given communicative intention is shown. Our system enables us to have agents defined
with different baselines to communicate accordingly. It allows us to give some coherency in the
agent's behaviours through out their interaction with users. For example an agent who is always
calm (baseline), in a joy state (dynamicline), could produce just a light smile, without moving the
rest of his body. On the other hand, a very exuberant agent (baseline), in an angry state (dynam-
icline), could produce a combination of behaviours like smiling, jumping, running, stretching his
arms, screaming. More precisely, the computation goes as follow. Given the agent's baseline, the
system computes the dynamicline associated with each intention. The dynamicline is described by
the same set of parameters of the baseline but with updated values. The dynamicline, together with
the current communicative intention, is then used to select the multimodal behaviour that best con-
veys the given intention. This computational process is explained in more details in (Mancini, &
Pelachaud, 2007) (Mancini, & Pelachaud, 2008). Baseline and dynamicline allow us to modulate
agent's behaviours.

4.1.12 Speech synthesis
The speech synthesis component is part of the conceptual component “BML Realiser” in the SE-
MAINE architecture. It uses the MARY TTS system to produce synthetic speech audio data as well
as timing information in an extended BML document suitable as input to the visual BML realiser.

As a proof of concept, the current version of the speech synthesizer also generates vocal backchan-
nels upon request.

page 23 of 36 ICT FP7 Contract no. 211486

SEMAINE D1b

4.1.13 BML realiser
This module generates the animation of our agent in MPEG-4 format (Ostermann, 2002). The input
of the module is specified by the BML language. It contains the text to be spoken and/or a set of
nonverbal signals to be displayed. Each BML tag is instantiated as a set of key-frames that are then
smoothly interpolated. Facial expressions, gaze, gestures, torso movements are described symbolic-
ally in repository files. The Behaviour Realizer solves also eventual conflicts between the signals
that are scheduled to happen on the same modality at the same time. The Behaviour Realizer uses
repository files of predefined facial expressions, gestures, torso movements and so on. The agent's
speech, which is also part of the BML input, is synthesized by an external TTS system (EULER,
Festival, MARY). The TTS system provides the list of phonemes and their respective duration. This
information is used to compute the lips movements. When the Behaviour Realizer receives no input,
the agent does not remain still. It generates some idle movements whenever it does not receive any
input. Periodically a piece of animation is computed and is sent to Player. It avoids unnatural “freez-
ing” of the agent. For some modalities, like the head or gaze, the Behaviour Realizer manages also
signals with “infinite” duration i.e. signals with an a priori unknown ending time. In this way we
can ensure the agent will keep the head turned till another BML command arising from a new com-
municative intention is generated by the Intent Planner module.

4.1.14 Greta player
The FAP-BAP Player receives the animation generated by the Behaviour Realizer and plays it in a
graphic window. The player is MPEG-4 compliant. The animation is defined by the Facial Anima-
tion Parameters (FAPs) and the Body Animation Parameters (BAPs). The FAPs define the shape de-
formation or movements of a set of 68 fundamental points on a synthetic face with respect to their
neutral position; the BAPs represent rotations of body parts around specific joints. Facial and body
configurations are described through respectively FAP and BAP frames. Each FAP or BAP frame
received by the Player carries also the time (timestamp) of its visualization computed by the Beha-
viour Realizer. In case the Player receives more than one frame with the same timestamp it displays
the latest one it receives.

page 24 of 36 ICT FP7 Contract no. 211486

SEMAINE D1b

5 Availability
The demonstrator system is publicly available from http://sourceforge.net/projects/semaine/.

Documentation on how to install and run the system is available at
http://semaine.opendfki.de/wiki/SEMAINE-1.0.

page 25 of 36 ICT FP7 Contract no. 211486

http://semaine.opendfki.de/wiki/SEMAINE-1.0
http://semaine.opendfki.de/wiki/SEMAINE-1.0
http://semaine.opendfki.de/wiki/SEMAINE-1.0
http://sourceforge.net/projects/semaine/
http://sourceforge.net/projects/semaine/
http://sourceforge.net/projects/semaine/

SEMAINE D1b

6 References
Allwood, J., Nivre, J., & Ahlsén, E. (1993). On the semantics and pragmatics of linguistic feedback.

Semantics, 9(1).

Banavar, G., Chandra, T., Strom, R., & Sturman, D. (1999). A Case for Message Oriented Middle-
ware. In Distributed Computing (p. 846). Retrieved June 17, 2008, from
http://dx.doi.org/10.1007/3-540-48169-9_1.

Bevacqua, E., Heylen, D., Tellier, M., & C. Pelachaud, C. (2007). Facial feedback signals for ECAs.
In AISB'07 Annual convention, workshop \Mindful Environments", pages 147{153, New-
castle, UK, April.

EULER project. http://tcts.fpms.ac.be/synthesis/euler/home.html.

Festival speech synthesis system. http://www.cstr.ed.ac.uk/projects/festival/.

Hartmann, B., M. Mancini, C. Pelachaud, Implementing Expressive Gesture Synthesis for Embod-
ied Conversational Agents, Gesture Workshop, LNAI, Springer, May 2005.

Heylen, D., Bevacqua, E., Tellier, M., & Pelachaud, C. (2007). Searching for prototypical facial
feedback signals. In Proceedings of 7th International Conference on Intelligent Virtual
Agents IVA 2007, pages 147{153, Paris, France.

Lakin, J. L., Jefferis, V. A., Cheng, C. M., & Chartrand, T. L. (2003). Chameleon effect as social
glue: Evidence for the evolutionary signi¯cance of nonconsious mimicry. Nonverbal Beha-
vior, 27(3):145{162).

Maatman, R. M., Gratch, J., & Marsella, S. (2005). Natural behavior of a listening agent. In T.
Panayiotopoulos, J. Gratch, R. Aylett, D. Ballin, P. Olivier, and T. Rist, editors, Proceedings
of 5th International Working Conference on Intelligent Virtual Agents, volume 3661 of Lec-
ture Notes in Computer Science, pages 25{36, Kos, Greece. Springer.

Mancini, M., & Pelachaud, C. (2007). Dynamic behavior qualifiers for conversational agents. In
Catherine Pelachaud, Jean-Claude Martin, Elisabeth Andr, Grard Chollet, Kostas Karpouzis,
and Danielle Pel, editors, Proceedings of 7th International Conference on Intelligent Virtual
Agents, volume 4722 of Lecture Notes in Computer Science, pages 112{124, Paris, France,
2007. Springer.

Mancini, M., & Pelachaud, C. (2008). Distinctiveness in multimodal behaviors. In Lin Padgham,
David C. Parkes, JÄorg MÄuller, and Simon Parsons, editors, Proceedings of Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS08), 2008.

MARY text-to-speech system. http://mary.dfki.de/.

Morency, L.-P., de Kok, I., Gratch, J. (2008). Predicting listener backchannels: A probabilistic mul-
timodal approach. In H. Prendinger, J. C. Lester, and M. Ishizuka, editors, Proceedings of
8th International Conference on Intelligent Virtual Agents, volume 5208 of Lecture Notes in
Computer Science, Tokyo, Japan. Springer.

Ostermann, J. (2002). Face animation in mpeg-4. In I. Pandzic and R. Forchheimer, editors, MPEG-
4 Facial Animation - The Standard Implementation and Applications, pages 17{55. Wiley,
England.

page 26 of 36 ICT FP7 Contract no. 211486

http://mary.dfki.de/
http://mary.dfki.de/
http://mary.dfki.de/
http://www.cstr.ed.ac.uk/projects/festival/
http://www.cstr.ed.ac.uk/projects/festival/
http://www.cstr.ed.ac.uk/projects/festival/
http://tcts.fpms.ac.be/synthesis/euler/home.html
http://tcts.fpms.ac.be/synthesis/euler/home.html
http://tcts.fpms.ac.be/synthesis/euler/home.html
http://dx.doi.org/10.1007/3-540-48169-9_1
http://dx.doi.org/10.1007/3-540-48169-9_1
http://dx.doi.org/10.1007/3-540-48169-9_1

SEMAINE D1b

de Sevin E. 2006. An Action Selection Architecture for Autonomous Virtual Humans in Persistent
Worlds. PhD. Thesis. VRLab EPFL.

Schröder, M., Charfuelan, M., Pammi, S., & Türk, O. (2008). The MARY TTS entry in the Blizzard
Challenge 2008. In Proc. Blizzard Challenge. Brisbane, Australia.

Schröder, M., Cowie, R., Heylen, D., Pantic, M., Pelachaud, C., & Schuller, B. (2008). Towards re-
sponsive Sensitive Artificial Listeners. In Fourth International Workshop on Human-Com-
puter Conversation. Bellagio, Italy.

Tyrrell T. 1993. Computational Mechanisms for Action Selection. In Centre for Cognitive Science.
Phd. Thesis. University of Edinburgh.

Ward, N., & Tsukahara, W. (2000). Prosodic features which cue back-channel responses in English
and Japanese. Journal of Pragmatics, 23:1177{1207, 2000.

Wolpert, D. M., & Flanagan, J. R. (2001). Motor prediction. Current Biology, 11(18), R729-R732.

Wöllmer, M., Eyben, F., Reiter, S., Schuller, B., Cox, C., Douglas-Cowie, E., Cowie, R. (2008).
Abandonning Emotion Classes – Towards Continuous Emotion Recognition with Modelling
of Long-Range Dependencies. Proceedings of Interspeech 2008, pp. 597-600.

page 27 of 36 ICT FP7 Contract no. 211486

SEMAINE D1b

Appendix I: SemaineML Markup
A custom set of ad hoc markup tags is used to encode domain-specific information. It is neither en-
visaged nor does it seem appropriate to aim for a standardisation of this markup. It is rather envis-
aged as the “catchall” representation for information that needs to be represented somehow but does
not seem to fit any of the standard formats.

The following list of examples is a starting point for SemaineML markup, as a tentative formalisa-
tion of project discussions. It will require thorough revision as the SAL domain is implemented
completely.

I.1 Feature functionals and behaviour description
Here we need to use an ad hoc markup. We give it the namespace prefix “semaine:”, associated with
the namespace URL “http://www.semaine-project.eu”.

<semaine:feature xmlns:semaine=”http://www.semaine-project.eu”
 name=”...” value=”...”/>

<semaine:behaviour xmlns:semaine=”http://www.semaine-project.eu”
 name=”...” intensity=”...”/>

I.2 ASR output
Details on what needs to be represented must be spelled out. In the simplest case, we could use a
simple text element:

<semaine:text xmlns:semaine=”http://www.semaine-project.eu”>
 this is what the user said
</semaine:text>

Or else we could specify a full lattice of word candidates, using the emma:lattice element
(http://www.w3.org/TR/emma/#s3.4), or something custom in between.

I.3 Current best guess values for states: user, agent, dialogue
These seem to be of a different kind: they are not interpretations but rather beliefs – there is no con-
fidence, also no time stamps – the values refer to “now”. EMMA doesn't seem right for this.

What to represent:
• “user state”: what does the agent know about the user state: he/she is in this state, has ended the

turn, user's interest level, engagement in the conversation, ...
• “agent state”: agent as a character of its own: a personality, a current emotion, stance towards

the user, the topic under discussion, the agent's state of interest, whether agent and user are
emotionally concordant, ...

• “dialogue state”: history of the statements made, turn, current topic, ...

page 28 of 36 ICT FP7 Contract no. 211486

http://www.w3.org/TR/emma/#s3.4
http://www.w3.org/TR/emma/#s3.4
http://www.w3.org/TR/emma/#s3.4
http://www.semaine-project.eu/
http://www.semaine-project.eu/
http://www.semaine-project.eu/

SEMAINE D1b

I.3.1 User state
epistemic/affective state information: could use EmotionML without confidence attribute, combined
with semaine-specific annotations.

<semaine:user-state xmlns:semaine=”http://www.semaine-project.eu”>
 <emotion:category set=”emotion-quadrant” name=”active-positive”/>
 <emotion:category set=”interest” name=”interested”/>
 <emotion:dimensions set=”engagement”>
 <emotion:engagement value=”0.9”/>
 </emotion:dimensions>
 ...
 <semaine:event name=”turn-event” value=”turn-yielding-signal”
time=”123456789”/>
 <semaine:behaviour name=”gaze-at-agent” intensity=”0.9”/>
 ...
</semaine:user-state>

I.3.2 Agent state
can represent emotion, stance toward the user etc. using EmotionML.

<semaine:agent-state xmlns:semaine=”http://www.semaine-project.eu”>
 <emotion:category set=”emotion-quadrant” name=”active-positive”/>
 <emotion:category set=”interest” name=”interested”/>
 <emotion:emotion type=”stance”>
 <emotion:category set=”like-dislike” name=”like”/>
 <emotion:object name=”user”/>
 </emotion:emotion>
 <emotion:emotion type=”stance”>
 <emotion:category set=”like-dislike” name=”dislike”/>
 <emotion:object name=”topic”/>
 </emotion:emotion>
 ...
 <semaine:emotionally-concordant-with-user value=”true”/>

</semaine-user-state>

I.3.3 Dialogue state
the history of statements made may be a longer thing; current turn holder and topic are shorter.

<semaine:dialog-state xmlns:semaine=”http://www.semaine-project.eu”>
 <semaine:speaker who=”agent”/>
 <semaine:listener who=”user”/>
 <semaine:topic name=”food”/>
 <semaine:dialog-history>
 <semaine:dialog-act who=”agent” topic=”food” time=”123456789”>
 what do you like eating?
 </semaine:dialog-act>
 <semaine:dialog-act speaker=”agent” topic=”repair” time=”123453000”>
 maybe I misunderstood?
 </semaine:dialog-act>
 ...
 </semaine:dialog-history>
 ...
</semaine:dialog-state>

page 29 of 36 ICT FP7 Contract no. 211486

SEMAINE D1b

Appendix II: FML Markup
FML-APML

The FML version we are currently using is based on the APML, Affective Presentation Markup
Language (DeCarolis et al 2004). FML-APML is used to model the agent's communicative inten-
tion. FML-APML is an evolution of APML and presents some similarities and differences. The
FML-APML tags are an extension of the ones defined by APML, so all the communicative inten-
tions that we can represent in APML are also present in FML-APML.

APML is based on Isabella Poggi's model of communication, where each tag corresponds to one of
the communicative intentions:

● certainty: this is used to specify the degree of certainty the agent intends to express.
○ Possible values: certain, uncertain, certainly not, doubt.

● meta-cognitive: this is used to communicate the source of the agent's beliefs.
○ Possible values: planning, thinking, remembering.

● performative: this represents the agent's performative.
○ Possible values: implore, order, suggest, propose, warn, approve, praise, recognize,

disagree, agree, criticize, accept, advice, confirm, incite, refuse, question, ask, inform,
request, announce, beg, greet.

● theme/rheme: these represent the topic/comment of conversation; that is, respectively, the
part of the discourse which is already known or new for the conversation's participants.

● belief-relation: this corresponds to the metadiscoursive goal, that is, the goal of stating the
relationship between different parts of the discourse; it can be used to indicate contradiction
between two concepts or a cause-effect link.
○ Possible values: gen-spec, cause-effect, solutionhood, suggestion, modifier, justification,

contrast.
● turnallocation: this models the agent's metaconversational goals, that is, the agent's intention

to take or give the conversation floor.
○ Possible values: take, give.

● affect: this represents the agent's emotional state. Emotion labels are taken from the OCC
model of emotion.
○ Possible values: anger, disgust, joy, distress, fear, sadness, surprise, embarrassment,

happy-for, gloating, resentment, relief, jealousy, envy, sorry-for, hope, satisfaction, fear-
confirmed, disappointment,pride, shame, reproach, liking, disliking, gratitude,
gratification, remorse, love, hate.

● emphasis: this is used to emphasize (that is, to convey its importance) what the agent
communicates either vocally (by adding pitch accents to the synthesized agent's speech) or
through body movements (by raising the eyebrows, producing beat gestures, etc.).
○ Possible values: low, medium, high.

FML-APML tags are used to model the agent's communicative intention. Each tag represents a
communicative intention (to inform about something, to refer to a place/object/person, to express an
emotional state, etc.) that lasts from a certain starting time, for a certain number of seconds. The
attributes common to all the FML-APML tags are:

● name: the name of the tag, representing the communicative intention modelled by the tag.
For example, the name performative represents a performative communicative intention.

● id : a unique identifier associated to the tag; it allows one to refer to it in an unambiguous

page 30 of 36 ICT FP7 Contract no. 211486

SEMAINE D1b

way.
● type: this attribute allows us to better specify the communicative meaning of the tag. For

example, a performative tag has many possible values for the type attribute: implore, order,
suggest, propose, warn, approve, praise, etc..

● start: starting time of the tag, in seconds. Can be absolute or relative to another tag. It
represents the point in time at which the communicative intention modelled by the tag
begins.

● end: duration of the tag. Can be a numeric value (in seconds) relative to the beginning of the
tag or a reference to the beginning or end of another tag (or a mathematical expression
involving them). It represents the duration of the communicative intention modelled by the
tag.

● Importance: a value between 0 and 1 which determines the probability that the
communicative intention encoded by the tag is communicated through nonverbal behaviour.

The timing attributes start and end also allow us to model the synchronization of the FML-APML
tags. They both can assume absolute or relative values. In the first case, the attributes are numeric
non-negative values. In the second case we can specify the starting or ending time of other tags, or a
mathematical operation involving them. Note that the optional end attribute allows us to define
communicative intentions that start at a certain point in time and last until new communicative in-
tentions are defined. Here is an example of absolute and relative timings.

<FML-APML>
<tag1 id="id1" start="0" end="2"/>
<tag2 id="id2" start="2" end="3"/>
</FML-APML>

In the above FML-APML code, tag1 starts at time 0 and lasts 2 seconds; tag2 starts at time 2, and
lasts 3 seconds.

All the timings are absolute, that is, they are both relative only to the beginning of the actual FML-
AMPL entry (equivalent to time 0).

<FML-APML>
<tag3 id="id3" start="0" end="2"/>
<tag4 id="id4" start="t1:end+1"
end="t1:end+3"/>
</FML-APML>

In this case, the first tag is the same as before. On the other hand, tag2 has a relative timing as it
starts as the first tag ends and lasts for 3 seconds. FML-APML tags can be attached and synchron-
ized to the text spoken by the agent. This is modelled by including a special tag, called speech, in
the FML-APML syntax. Within this tag, we write the text to be spoken along with synchronization
points (called time markers) which can be referred to by the other FML-APML tags in the same
entry. For example:

<FML-APML>
<speech id="s1">
<tm id="tm1"/>
what are you
<tm id="tm2"/>
doing
<tm id="tm3"/>
here
<tm id="tm4"/>
</speech>

page 31 of 36 ICT FP7 Contract no. 211486

SEMAINE D1b

<tag3 id="id3" start="s1:tm2" end="s1:tm4"/>
</FML-APML>

With the above code, we specify that the communicative intention of tag3 starts in correspondence
with the word doing and ends at the end of the word here.

Adaptation for the SEMAINE system

For the format used in the SEMAINE system, we start from the format used in the Greta system,
with slight modifications to support XML namespaces. The following is an example.

A top-level element <fml-apml>, which has no namespace, encloses both a <bml> element (in the
BML namespace) and an <fml> element (in the FML namespace). The FML section should contain
functional information, such as information about the linguistic structure, the emotion to be ex-
pressed in the voice, etc. This format is extremely preliminary and needs careful attention to be
meaningful and consistent in the SEMAINE system. For example, it can be seen in the example be-
low that the <emotion> tag in the FML section is not yet adapted to use EmotionML.

<?xml version="1.0" encoding="UTF-8"?>
<fml-apml version="0.1">
 <bml xmlns="http://www.mindmakers.org/projects/BML" id="bml1">
 <speech id="s1" language="en_US" text="Hi, I'm Poppy, the eternal
optimist. What's your name? ">
 <mark xmlns="http://www.w3.org/2001/10/synthesis" name="s1:tm1"/>

 Hi,
 <mark xmlns="http://www.w3.org/2001/10/synthesis" name="s1:tm2"/>
 I'm
 <mark xmlns="http://www.w3.org/2001/10/synthesis" name="s1:tm3"/>
 Poppy,
 <mark xmlns="http://www.w3.org/2001/10/synthesis" name="s1:tm4"/>
 the
 <mark xmlns="http://www.w3.org/2001/10/synthesis" name="s1:tm5"/>
 eternal
 <mark xmlns="http://www.w3.org/2001/10/synthesis" name="s1:tm6"/>
 optimist.
 <mark xmlns="http://www.w3.org/2001/10/synthesis" name="s1:tm7"/>
 What's
 <mark xmlns="http://www.w3.org/2001/10/synthesis" name="s1:tm8"/>
 your
 <mark xmlns="http://www.w3.org/2001/10/synthesis" name="s1:tm9"/>
 name?
 <mark name="s1:tm10"/>

 </speech>
 </bml>
 <fml xmlns="http://www.mindmakers.org/fml" id="fml1”>

<performative id="p1" type="announce" start="s1:tm1"
end="s1:tm4"/>

<rheme id="r1" start="s1:tm1" end="s1:tm4"/>
<performative id="p2" type="warn" start="s1:tm4" end="s1:tm6"/>
<theme id="t1" start="s1:tm4" end="s1:tm6"/>
<world id="w1" ref_type="person" ref_id="self" start="s1:tm7"

end="s1:tm8"/>
<performative id="p3" type="suggest" start="s1:tm8"

end="s1:tm11"/>
<rheme id="r2" start="s1:tm6" end="s1:tm14"/>
<emotion id="e1" type="anger" start="s1:tm9" end="s1:tm14"/>
<world id="w2" ref_type="person" ref_id="self"

prop_type="location" prop_value="foreign" start="s1:tm12" end="s1:tm13"/>
</fml>

</fml-apml>

page 32 of 36 ICT FP7 Contract no. 211486

SEMAINE D1b

Appendix III: BML Markup
The BML language specifies the nonverbal signals that can be expressed through the agent commu-
nication modalities. Each BML top-level tag corresponds to a behaviour the agent is to produce on a
given modality: head, torso, face, gaze, body, legs, gesture, speech, lips. In the current version for
each modality one signal can be chosen from a short fixed list. Each signal has defined a start time
and duration. It can be absolute (in seconds) or relative, in relation to the other verbal or nonverbal
signal. The BML language version implemented for Greta contains some extensions which allow us
to define labels to use a larger set of signals which can be produced by the agent. Moreover through
a set of parameters, called expressivity parameters, it is possible to specify the quality of movement
of each signal (Hartmann et al 2005): for example, Greta can perform the same gesture in different
ways: quickly or slowly, smoothly or jerkily, etc.

BML as a markup language is more mature than FML. The SAIBA initiative (http://wiki.mind-
makers.org/projects:BML:main) is working on a draft of a specification version 1.0. The version
used in the SEMAINE project is currently a mix of the previous version of BML used in the Greta
system, the latest BML draft, and attempts to be clean with respect to namespaces, notably regard-
ing the annotation of speech content using W3C SSML (http://www.w3.org/TR/speech-synthesis/).

The following is an example BML document used in the current SEMAINE system. In addition to
the BML section in the FML example of Appendix II, it features <pitchaccent> and <boundary>
tags inserted by the speech preprocessor. Potentially, the BML markup would also include tags to
drive visual behaviour.

<?xml version="1.0" encoding="UTF-8"?>
<bml xmlns="http://www.mindmakers.org/projects/BML" id="bml1">
 <speech id="s1" language="en_US" text="Tell me the details"
xmlns:ssml="http://www.w3.org/2001/10/synthesis">
 <mark xmlns="http://www.w3.org/2001/10/synthesis" name="s1:tm1"/>

 Tell
 <mark xmlns="http://www.w3.org/2001/10/synthesis" name="s1:tm2"/>
 me
 <mark xmlns="http://www.w3.org/2001/10/synthesis" name="s1:tm3"/>
 the
 <mark xmlns="http://www.w3.org/2001/10/synthesis" name="s1:tm4"/>
 details
 <mark xmlns="http://www.w3.org/2001/10/synthesis" name="s1:tm5"/>

 <pitchaccent end="s1:tm2" id="xpa2" start="s1:tm1"/>
 <pitchaccent end="s1:tm5" id="xpa14" start="s1:tm4"/>
 <boundary id="b16" time="s1:tm5"/>
 </speech>
</bml>

The following version of the above file includes concrete timing information, added by the speech
synthesis component at the same time as producing audio data. The format is therefore suitable for
realisation in the BML realiser component.

<?xml version="1.0" encoding="ISO-8859-1"?>
<bml xmlns="http://www.mindmakers.org/projects/BML" id="bml1">
<speech xmlns:ssml="http://www.w3.org/2001/10/synthesis" id="s1"
language="en_US" text="Tell me the details">

<ssml:mark name="tm1"/>
Tell
<mary:syllable xmlns:mary="http://mary.dfki.de/2002/MaryXML" accent="1"
stress="1">

page 33 of 36 ICT FP7 Contract no. 211486

http://www.w3.org/TR/speech-synthesis/
http://www.w3.org/TR/speech-synthesis/
http://www.w3.org/TR/speech-synthesis/
http://wiki.mindmakers.org/projects:BML:main
http://wiki.mindmakers.org/projects:BML:main
http://wiki.mindmakers.org/projects:BML:main
http://wiki.mindmakers.org/projects:BML:main
http://wiki.mindmakers.org/projects:BML:main
http://wiki.mindmakers.org/projects:BML:main

SEMAINE D1b

<mary:ph d="0.091" end="0.091" p="t"/>
<mary:ph d="0.067" end="0.158" p="E"/>
<mary:ph d="0.089" end="0.247" p="l"/>
</mary:syllable>

<ssml:mark name="tm2"/>
me
<mary:syllable xmlns:mary="http://mary.dfki.de/2002/MaryXML" stress="1">
<mary:ph d="0.055" end="0.302" p="m"/>
<mary:ph d="0.085" end="0.387" p="i"/>
</mary:syllable>

<ssml:mark name="tm3"/>
the
<mary:syllable xmlns:mary="http://mary.dfki.de/2002/MaryXML">
<mary:ph d="0.074" end="0.461" p="D"/>
<mary:ph d="0.041" end="0.502" p="@"/>
</mary:syllable>

<ssml:mark name="tm4"/>
details
<mary:syllable xmlns:mary="http://mary.dfki.de/2002/MaryXML">
<mary:ph d="0.091" end="0.593" p="d"/>
<mary:ph d="0.071" end="0.664" p="I"/>
</mary:syllable>
<mary:syllable xmlns:mary="http://mary.dfki.de/2002/MaryXML">
<mary:ph d="0.124" end="0.788" p="t"/>
<mary:ph d="0.09" end="0.878" p="EI"/>
<mary:ph d="0.146" end="1.024" p="l"/>
<mary:ph d="0.217" end="1.241" p="z"/>
</mary:syllable>
<mary:boundary id="b32" type="HH" start="s1:tm5" end="0.2"
xmlns:mary="http://mary.dfki.de/2002/MaryXML"/>
<ssml:mark name="tm5"/>
<pitchaccent id="xpa2" start="s1:tm1" end="s1:tm2" time="0.1235"/>
</speech>
</bml>

page 34 of 36 ICT FP7 Contract no. 211486

SEMAINE D1b

Appendix IV: SMILE Low-Level Features
Feature Group Features in Group #

Signal energy (frame-wise) Root Mean-Square (RMS-E) 1

Logarithmic Energy (log-E) 1

Fundamental Frequency (F0) based on
Autocorrelation (ACF)

F0-Frequency (Hz) 1

F0-Strength (Peak height of ACF) 1

F0-Quality (Zero-Crossing Rate of ACF wrt. to F0) 1

Mel-Frequency Cepstral Coefficients
(MFCC)

Coefficients 0-15 16

Spectral Centroid 1

Roll-off (10%, 25%, 50%, 75%, 90%) 5

Flux 1

Frequency-band energy (0-250Hz, 0-650Hz, 250-
650Hz, 1000-4000Hz)

4

Position of Maximum 1

Position of Minimum 1

Time signal features Zero-Crossing Rate (ZCR) 1

Maximum Sample 1

Minimum Sample 1

Mean (DC component) 1

 Integration of the following features is currently in progress:

Linear Predictive Coding (LPC) LPC coefficients (12)

Voice Quality Harmonics-to-Noise-Ratio (HNR) (1)

Jitter (1)

Shimmer (1)

Pitch by Harmonic Product Spectrum F0-Frequency (1)

Probability of Voicing (pitch strength) (1)

page 35 of 36 ICT FP7 Contract no. 211486

SEMAINE D1b

Appendix V: SMILE Functionals
Functionals Group Functionals in Group #

Extremes Maximum/minimum value 2

Relative position of maximum/minimum value 2

Range 1

Mean Arithmetic mean 1

Arithmetic mean of absolute values 1

Quadratic mean 1

Maximum value - Arithmetic mean 1

Non-Zero Arithmetic mean of all non-zero values, 1

Percentage of all non-zero values wrt. total number of values. 1

Quartiles 25%, 50% (median), and 75% quartile 3

Inter-quartile range (IQR): 2-1, 3-2, 3-1 3

Percentiles 95%, 98% percentile 2

Higher Moments Skewness, Kurtosis 2

Variance, Standard deviation 2

Centroid Centroid: Centre of Gravity 1

Threshold Crossing Rates Zero-Crossing Rate 1

Mean-Crossing Rate 1

Linear Regression 2 coefficients (m,t) 2

Linear and quadratic regression error 2

Quadratic Regression 3 coefficients (a,b,c) 3

Linear and quadratic regression error. 2

Peaks Number of peaks (maxima) 1

Mean distance between peaks 1

Mean value of all peaks 1

Mean value of all peaks – Arithmetic mean 1

Segments Number of segments, based on delta thresholding 1

Times Time, within which values are above 75% of the total range 1

Time within which values are below 25% of the total range. 1

Rise time and fall time 2

Discrete Cosine
Transformation (DCT)

Coefficients 0-5 6

page 36 of 36 ICT FP7 Contract no. 211486

	1Executive Summary
	2System architecture: Components and representation formats
	2.1Overview of the conceptual architecture
	2.2Representation formats
	2.2.1Features
	2.2.2User data: signals
	2.2.3User data: behaviours
	2.2.4User data: intentions
	2.2.5Dialog state
	2.2.6Agent intentions
	2.2.7Agent behaviours
	2.2.8Candidate action
	2.2.9Action
	2.2.10Behaviour plan
	2.2.11Behaviour data

	3The SEMAINE API
	3.1Message routing: Receiver, Sender and their subclasses
	3.2Component
	3.3ComponentRunner
	3.4Meta messages and the System Manager
	3.5Centralised logging
	3.6XML handling

	4The first integrated system demonstrator
	4.1Individual system components
	4.1.1Low-level audio features
	4.1.2Emotion detection
	4.1.3ASR
	4.1.4Interest detection
	4.1.5Turn taking
	4.1.6User utterance interpreter
	4.1.7Agent utterance proposer
	4.1.8Backchannel/Mimicry action proposer
	4.1.9Action selection
	4.1.10Speech preprocessing
	4.1.11FML2BML
	4.1.12Speech synthesis
	4.1.13BML realiser
	4.1.14Greta player

	5Availability
	6References
	Appendix I: SemaineML Markup
	I.1 Feature functionals and behaviour description
	I.2 ASR output
	I.3 Current best guess values for states: user, agent, dialogue
	I.3.1 User state
	I.3.2 Agent state
	I.3.3 Dialogue state

	Appendix II: FML Markup
	Appendix III: BML Markup
	Appendix IV: SMILE Low-Level Features
	Appendix V: SMILE Functionals

